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,CALCULATIONOF ELECTROPIAGNETICOBSERVABLE IN FEW-BODY SYSTEMS

B.F. Gibson

School of Physics
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Australia

and
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i
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An introduction co the calculation of electromagnetic observable in
few-body systems is given by studying two examples in the trinucleon
system: 1) the elastic electron scattering charge form factor in con-
figuration space and momentum space and 2) the two-body photodisinte-
gration of 3H leading to a neutron-deuteron final state Ln a separable
potential formalism. In the discussion of charge form factor calcula-
ci.on~,a number of related topics are touched upon: the relation of
~cructure in Y to the properties of simple NN forces, the Faddeev and
SchrOdinger solution to the harmonic oscillator problem, the
Rosenbluth formula for electron scattering from a spin-1/2 nuclear

~He), and the char?,target (ego, the proton or density operator.
Formulae for ~He and ~H charge form factors a central force
approximation are given in configuration and momentum space. The
phvsics of these form factors is discussed in li~ht of results from
realistic nucleon-nucleon potenciai model calculations, ~ncludinR the
effects of two-pion-exchallgethree-body force models, Topics covered
are the rms charge radii, characterization of the charge form factors,
properties of the charge densities, and the Coulomb energv of ‘He.
In the discussion of the 3H photodisintegration, the SLegert form of
the electric dipoLe operator (in the long wave Length limit) is
derived as are the sl’parablepotential equations which describe the
off-shell transition :Implitudeswhich connect nucleon-pLus-corrected-
pair states. Expressions for the Born amplitudes required to complete
the two-body phocodi:integration amplitude calculation are g~veno
N\lrnericalresults for a model central force probLem are discussed and
compared with an approximate calculation. Comparisons with ll{(Y,II)d
and JHe(y,p)d data are made, and the significant feaures of the exact
theoretical calculation are outlined.

*pemanent address



LECTURE I. TRXNUCLEON FORM FACTORS FROM ELASTIC ELECTRON SCATTERING

1. ~ntroduction

Now that we have learned how to generate few-body wave functions

in numerous ways, let us explore how one relates these ideas to the

phvsical world of experimental observable. Most of us approach the

everyday world around us bv means of five senses. Of these, one ot

the most important is sight. How do we see? Photons from a source

(natural or artificial) are scattered from obiects and detected bY our

eves . Experience has taught our super computer brains how to process

the electronic sienals generated bv the optic nerve into meaningful

images. Photon scatterin~ is one of our oldest analytical :OOIS.

Photon scattering is not the onlv such process that provides us

with meaningful information about the world around us. Each ot you is

familiar with the storv ot Rutherford scattering and the discovery of

the nucleus. In that case, alpha particle scattering reveaLed that

the atom was not a uniform charge di~tri.huti.on. That example contains

an important lesson: new physics is discovered when experimental ob-

servation differs from tile result of a model calculation that is as

complete as possible in term:: of the ~nown, relevant physics - not

when undetermined parameters are varied (or chosen) to put a curve

through the data. The pupose of calculations performed within the

context of an exact theorv i.s to expLain honest differences with

otherwise successful approximllte theoretical prescriptions and to

el.uciriate or discover novel aspi?cts of phvsi.cs.

The simplest picture ot tle nucleus is obtained in much the same

manner ,as we use light to see, although we empLoy the “virtual photon”

exchanzed between an electron anl the nucleus in the electron scatter-

in~ process to define our im~ee Using elastic electron scattering,

one can exp lore the charze anl magnetic moment densities ot the

nucleus . The relativistic th{~orv was Eirst written down in the ea~lv

1930’s by Mott,l The fact tha~ n(lclear charRe distributions and sizes

could be extracted from sl~ch expertrnents was laid out clearlv bv Rc)se2

Ln the late 1940’s, It was in the 1950’3 that eLastic electron

scattering became a feasible experimental tool) and Hofstadter won the

NobeL Prize in 1961 for his work ir electron scattering investigation

of the structure of the n{lcleus. [t is from this hackgrollnd that we

ask such questton~ as whether we c~~n provide a quantitative mo(jel ot

the charp. c and maf2netic mornerlt IIistribution:; ()t the t(-!w-nll[’

svstems - those nuclei whose wave’ tunctions we can generate

nonr~lativistic Hamiltonians incorporating realistic representat

of the nucleon-nucleon interaction.
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11. Qualitative Aspects of the Relation between v and V

Because one is investigating a density or ~v12 function in

studying the differential cross section measured in unpolarized

elastic electron scattering, the historical approach to analysis of

the data has been to postulate a plausible analytic form for the

?ensity and to ask how well the data can be described by varying the

model parameters. Such a prccedure should be Iltilized with caution,

because it is CLE?ar from the Schrbdinger equation

[T+ V]V= Ev (1)

chat important features of the nucleon-nucleon interaction will be

reflected in the wave function v and therefore in the densitv l’if12.

Assuming a aiven form for Y makes a definite statement about the

underlying Hamiltonian which has been implicitly assumed.

l-et us examine the spatially symmetric S-state components that

result Erom using three different central potential forms to generate

the trinucleon wave function: smooth Gaussian (C) , one term Yukawa

(MT IV model of Mal. fliet and Tlon4) , and a two term Yukawa with short-

ranQe repulsion (MT V model of Mal.fliet and Tjon4). Figure 1 depicts

the Schr8din~er wave function for the G model where ; a,ld ~ are the

Jacobi coordinates of the 3H svstem and 8 is the angle between the two

vectors,5 (See Appendix A.) As expected, V for this smooth potential

shows no sharp structure. This wave function is reminiscent of that

which results trom solving the harmonic oscillator (HO) Hamiltonlan.

However, it differs in that the wave function falls off exponen-

tially. (We shall return to the HO problem below.) The point to

retain is that a smooth nd hoc wave function assumption implies an

assumption that the underlying two-body potential is reasonable

smooth. This point is emphasized bY comparinR Fi.R.l with FiR.2, in

which we piot Y for the Ml’ IV potential model.S The ‘# for the Y~lki~w~

potentLaL exhibits a definite kink, or ridge structure, due to the l/x

sinRuaLrity of the Yukawa form. When y s x/2, one pair of interactlnR

nucLeons Lle close togethe- and the I/x si.ngllLaritY Leads to a discon-

tinuity in the first derivative of v alonR that line. This occurg

for 0-0, a collinear configuration, but not for 0=90° , an isoscei.cs

trian~le config~lratlon, in which overlappin~ pairs cannot occur t-or

)(*()*y, The ridge structure is even more apparent in rhc smali S’-

state components of v, when the singlet :ind triplet potentials

differ, as shown in Fig.’~, where one of the S’ -state t’ )mponcnt!i fs

plottt?d for the MT [I-IV model, Thus, even a p(trelv ;lttrticriv~’



pGtential having a simple Yukawa singularity leads to structure in the

SchrOdinger wave function.

Let us turn to the MT V model with short-ran~e repulsion, whose

wave function is plotteds in Fi~.4. One anticipates that ~ will be

small whenever any two of the nucleons are close together. Clearly

this has Led to the “death valley” in Y along Y = x/2 and along x-O.

{,

Fig.1 The SchrOdineer wave
function at f{xed angle 0=00
for the Gaussian Dotencial model.

FiE.2 The SchrOdinger wave
function at fixed angle 0=0°
for the ‘fukawaDotential (MT IV).,.. ,.–––..––——.

FiE.’) The :;l:hrndin~erwave Fiq.4 The Schrnding,erwave
fllncttoncomponent +7 of the :J’- functl.ou;Itfixed angle 0-0° Por
state at flixe(iangle 0-0° for the MT V potential model.
the MT 11-lV potetlttalmodel,



The two peaks in V correspond to configurations in which the three

nucleons are separated by about 1 fm, the distance at which the PITV

potential attains its greatest depth (maximum attraction). For e=COO

(not shown) these two peaks merge into one corresponding tO an

equilateral ?riangle configuration with internucleon separations of

about 1 fm. Note that ~ for the MT V model is suppressed near the

origin, in contrast co w for purely attractive potentials which has a

maximum at the origin. In the neighborhood of x=y=O, all three

particles are close together and the shore-range repulsion of the

potential has its maximum effect.

We have seen that as the potential model becomes more sophisti-

cated, the complexity of the corresponding trinucleon wave function

increases. Yukawa forms introduce kinks or ridges. Short-range

repulsion produces peaks and valleys as the nucleons localize at

positions corresponding to maximum attraction in the potential. It is

also clear that simple (smooth) ad hoc model wave function hypotheses

imply hidden assumptions about the smauthness (lack of repulsion) of

the underling potentials. “Forewarned is forearmed”.

These effects in v are reflected in calculated observable;

ego, the electron scattering cross sections. To illustrate this

point, we show in FiR.5 Born approximation model results for scatter-

ing off gold using charge distributions of the uniform [p(r) A P. ,

r < rol and exponential [~(r) - P. e‘r/al forms.3’6 AS the surface of

the distribution becomes sharper, nodes develop; the spacing of the

zeros is determined effectively by the size of the svstem. Note that

a Gaussian charge distribution leads to a straight line on such a

plot. As we shall see later, the trinucleon data (and alpha particle

data as well) do not support the choice of such a simple, smooth model

wave function.

Because 1 have emphasized structure and because we have heard so

much of calculating Faddeev amplitudes, let us retllrnto the harmonic

oscillator model to ensure that the distinction between Schr5dinger

wave function and Faddeev amplitude is clear. It is the structure in

the former that influences calculated observable. Structure in the

latter may have absolutely no effect upon the observable.

Each of YOU is familiar with the Schrbdinger wave function

solution to tne nonrelativistic harmonic oscillator problem for three

qpinless par’.icl.es:(here we redefine ~ to be 43/2 ~)

(2il)
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Fi.g.5 Cross section angular
distributions for electron
scattering from Rold for a
uniform charRe distribution
(solid line) an exponential
charRe distribution (dashed
line) and a Gaussian charRe
distribution (dotted line).
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The three-body solution is easily verifieci to be the familiar Gaus-

sian function

Y - 3e-B(i2 + }~)/’2 n (2b)

where E = 2BN/M. (See Fiz.6) One can generate this solution bv soL-

ving che corresponding Faddeev equation7

(3a)

for the Faddeev amplitude ~(~,~) and then constructing the Schrodinger

wave function from

(3b)

= VI + $2 +*3 .

This has been done, hut one can also obtain a solution

this CflSt2, v 1s aLreadY known bv solvinR the equation

(4a)



The solution is of the fom

- II JN+,(4~P) jp dt CN+2 e-t2/2 YN+1(4~ t)!,
o

(Lb)

where pz = ~z + ~z and x is an arbitrary constant. ObviousL’?~ne has

cl+lz+%=o
(5)

because of the (~z-~z) factor in ~, ; i.e., it does not contribute

to V in an~ay. The G component of v results because the operator in

the Faddeev equaticn Eq.(3a) is not L2. Nonetheless, it illustrates

9 9

a a
a= a
:j ~

Sa

a a
1 s

h
a

FtR.b The SchrOdinger wave Fig.] The Faddeev amplitude
tunction tor the three-body without the arbj,trarycomponent
harmonic oscillator problem. (A=O) for the three-bodv harmon-

ic oscillator problem.

the poict that structure in the Faddeev amplitudes (see FiR.7) may

cnncel in the sums needed to generate the Schrodinger wave function.

(The arbitrary component of v has been removed by setting A = O.)

Compare Fi~ures 6 and 7. in particular, the ground-state wave func-

tion for the A=3 system must be posttive detinite, but the Faddeev

amplitude for a potential with strong short-range repulsion will not

be poattive del!initc.518 It is the cancellation between positive and



negative parts of the Faddeev amplitudes in Eq.(3b) that leads to the

deep valley seen in FtR.4. Thus , one must he careful about trying to

reach conclusions concerning experimental observable based on an

examination of the Faddeev amplitudes for a given model. It is the

full Schr?3dinger wave function that defines the features Ot the

ohservahles .

111. Summary of Elastic Electron Scattering Formulae

Because a complete treatment of electron-proton scattering would

require an hour unto itself and anything less would leave You wonder-

ing about the slight-of-hand performance, I refer you to the hook b“{

Biorken and Drel19 if the subject i~ not already familiar. I wiil

quote here only the salient points and remark chat the~ are not the

subiecc of this lecture.

Consider the diagram shown in Fig.8 which depicts lowest order

(sinele photon exchanRe) scattering of an electron from a proton. The

electron with 4-momentum kU - (cJk) scatters into the final state

L-momentum k’U = (E’,l?’), while the proton recoils from initial state

with L-momentum P“ = (E,~) to the final state with P’” = (E’,~’). A

virtual photon wiLh A-momentum transfer qP=kU-k’U=P’U-PP=(u,~) is

exchanged in the process. We note that qz (= qu q~) = U* - 42 f 0,

which is space-like, Hence, electron scattering is restricted to the

kinematic region for which ~z > uZ. Figure 1 describes only the

exchange of a sinRle photon, but because hiRher order diaRrams involve

higher powers of the fine structure constant a(= 1/137), the lowest

order rliaeram should acccunt for most of the scattering amplitude.

The differential cross section for scattering an electron from a

physical proton is

where

a co9 e

‘Mrn’ —~ 12
2C Sillz;

(7)



Fig.8m Lowest order diagram for
electron scattering from a proton.

is the Mott cross section which describe~ the scattering from a point

charge in the absence of any internal structure of the proton.

Equation (6) is the famous Rosenbluth formula. This is the

relativistic analog of che famous Rutherford cross section (with the

charge of the nucleus set to 1). The F1 and F2 are structure

functions associated with the charge and magnetic moment densities of

the proton due to such vertex corrections as depicted in Fig.9a and

9b, and c is the anomalous magnetic moment (K = 1.79 while Kn =
P

-1.91). We note that the Dirac and Pauli structure form factors F1

and F2 can be separated experimentally by measuring the cross section

as a function of e while holding the momentum transfer q constant.

The combinations of the form factors given by

have a

Eq.(6)

more direct

rewritten as

‘E “
F1+@F2 (8a)

4M2

‘M = F, + K F2 (8b)

geometrical interpretation, and o~~eusuaLIY finds

(9)

These are the nucleon form factors that we have used in our 3H and

qHe form factor studies. Numerical values were taken from the 8.2 fit

of HC)hleret al.10

The charge form factor F(qz) is proportional to a matrix element

of the form9

(l(ja)M - j d3pi U(fif) U(;i)

where $ ~ and fifare related by fif= ~i - i. ‘L’hua,the form factor



(a) (b)

Fig. 9 Electromagnetic vertex corrections for the proton

structure function is a folding of the momentum space wave functions

at the interaction vertex:

For calculations utilizing configuration space wave functions, it is

more convenient to work with the Fourier transform of this expression:

The uz(~) can be identified with the charge density in the impulse

approximation when one discusses nuclear systems.

The result for elastic electron scattering from the trinucl$ons

is exactly that given by Eq.(9), because the nuclei have J“ = ~ .

The formula for scattering from bHe is even simpler, because that

spin-Clobject has no magnetic moment. Thus one need only set G& = O.

The deuteron, being a spin-1 ob~ect, is more complex; there exists an

electric quadruple density in addition to a monopole charge density,

3 Because of the increasedas was pointed out by Schiffl’ and others.

complexity of the formulae for the spin-1 system, they will be left as

a literature search exercise for those interested.

Restricting our attention to the trinucleons, we would like to

determine four form factors: a charge and a magnetic moment fom

factor for each of 3H and 3He. To orient ourselves, let us consider

the case in which we assume that the nucleon-nucleon force 1s purely

central. (With no tensor force, there are no D-state components in

the A-3 wave function.) We will also neglect differences between

3He and 3H due to the Coulomb force acting between the two protons ir(

3He. In this model, the trinucleon wave function has two components



(see Appendix B for a discussion of the spin, isospin, and spatial

structure of these states.): the spatially symmetric S-state and the

mixed-symmetry S’-state.12 If one haa solved the Faddeev amplitude

equations in terms of spin-singlet and spin-triplet amplitudes $(s)

and $(t), then the S and S’ Faddeev amplitudes are Riven bY4S5

*S’
- l*(S) + $(t) 1/47 ●

(i la)

(l lb)

Because *(S) and dI(t) have opposite signs, Vs is the dominant

amplitude. [If the nucleon interaction were spin inde:~~~~en’

(v(s) s v(c)), then $s’ : (J.] The symmetrized combination ot S-state

ampli~udes which define the S-state component ot the SchradinRer wave

function is then

The S’-state amplitude combinations are

(12a)

(12b)

(12C)

The SchrBdinger wave function tor 3He v-u~ +(vl$
21 - “,$2)

a
can then be used to evaluate matrix elements ot’ the charRe densitv

operator, which we give here in impulse approximation:

++(1 n (;-;’)1.- ’12’ ‘c

(13)

The Tiz are the unit tsospin operator: that act on the rI’sin the

4’s, as defined in Appendix B. We limit our consideration to the

nonrcl.ativi9tic, impulse approximation form of the charRe density

operator for reasons outlined in Appendix C. Ic suffices to note here

that exchanRe current contributions to the charRe operator are

essent~aLLv relativistic corrections and they are arnbi~uous.1‘J Such

is not the cage for the tsovector

the mapnetic moment Aennitv, but

considering that problem here.

Because ~He has a charge of 2

exchange current contributions t(l

time Limitation prevents us from

, we write its term factor as



.* *

and evaluate Eq.(1

u and v functions

to ;-:i , one can

expression. The

evaluated Leadinu

2 Fc(JHe) = < ? Ieiq”t Pcl T > (14)

3) using the wave function Y defined in terms of the

of Eqs. (11 and 12). By challRingvariables from ~

facccr the nucleon form factors GP and Gn from the

expectation values of the T
iz

operators are easily

to the simple relation 12,14

2Fc(3He) = (2Gp + Gn) F, - 2(Gp - Gn) F2 ,

where we have detinerl the bodv form factors F1 and FZ to be

and

(15)

(16a)

UsinR the corresponding wave function for ‘H, we obtain in that case

We have made several sI,mpLityinR assumptions co obtain these

expre~sions. Because the S’ state is onlv a few z of the

normalization, let us drop the Vi + vi terms in F, . (Note that at

fi-(!, F2 vanishes because u is svmmetric in x and VI is ancisvmm~tric

in ;; thus the expressions in Eqs (14 and lb) have the proper

normalizations.) Similarly, the neu~ron CharRe form factor is small

and we shall neglect it. Then we find

Fc(~He) = Gp(F, - F2) (lHa’

and

Fc(~H) - Gp(F1 + 2 F2) . (lHb)

ReCRUSe F2 19 dettned in such a wav as to be positive, we have

F (]He) ~ FC(lH) t’or ~mall q~ which implies that the radius f)t‘tiec
must he Rrenter than thnt for ~H,14 We sh~lL discuss the phvqic,qI)t

this later, but tor the moment we emphasize that it ha~ nothinK t’)do

with Coulomb repulnion in ~He. There are no CouLomb ettectq in the



present analysis.

The expressions for F1 and F~ that correspond to Eq.(18) are

explicitly

and

(19a)

(19b)

i! terms of confiEuracioa space wave functions. In momentum space,

chev are

and

These Latter momentum space expressions were tirs~ used to accuall.v

calculate 3H ar.dJHe charue and magnetic moment form factors fo(

realistic nucleon-nucleon force wave functions solutions ot the

Fadrieevequations.15

Iv. Phvsics of the Trinucleon Form Factors

The form factor is a function of q2 and not q even thou~h the

exponential argument in Rqs. (16) and (19) is linear in ~. Odd powers

vanish in the transform because of L. - isotropic dependence ot rbe

char~e densttv upon the direction ot the external vector ~. For a

general :fens\rvo(r)/hm, one obtains

- ~= dr r29(r) jo(qr) f21h)
o



where

(23)

and

1=
i
- dr r2p(r) . (24)

It is clear from Eq.(22) that the larger the size of the system, the

faster the form factor falls awaY from F(q2=O) = 1.

Let us applv this result to an analvsis of the trinucleons.

Martino recently reported values for the rms radii of sHe and 3H of

1.93(3) fm and 1.81(5) fm respectively.‘6 The 3He charRe density has

a radius some 6% lareer than that of 3H. If all the nucleon-nucleon

forces were equal, the two radii would be the same. (See Fig.lfla.)

They are not. The neutron-proton spin-triplet force is stronger,

binding the deuteron, whereas the neutron-proton singlet force, the

proton-proton force, and t[ie neutron-neutton force all Lead to lust

unbound singlet states. The CharRe in 3He is carried by the Like pair

of nucleons; the char~e in ~H is carried by the odd nucleon. ‘thisis

illustrated in FiRs. 10b and 10c. Because the spin-triplet and spin-

singlet forces are not equivalent, the like pair of nucleons is dis-

tributed differently from the odd nucleon. In particular, the inter-

action between Like nucleons is weaker than the average neutron-proton

interaction, such that the like nucleons lie tarther trom the centrt~-

of-mass than does the odd nucleon - the like nucleon pair distri-

bution is more extended in space.12~17 Because the charRe radius is

the average distance between the protons ai~dthe centre-ot-mass, the

‘He charge radius is greater than the ‘H charge radius. This marli-

fests itself tn the wave function through the appearance of the S’-

state wave function component. This S’-state of mixed spatial symme-

trv is a spin(isospin)-space correlation. It is responsible for

introducing the F2 body term tactor in Ems.,, and (18). It

breaks the isoscal~r symmetry in the trinucleon charRe form Eactors,

introducing an isovector component. PLease understand that the diff-

erence between Fc(~He) and FC(3H) discussed here has absolutely no-

thinR to do with Coulomb repulsion between the two protons in ~He. [r

arises strictlv from the spin dependence of the nucleon-nucleon force,

How do Faddeev calculations ot the trinucleon wave tuncttons

Fare with respect to the mensured radii? The answer to the q~lestion

19 not simple, because the radiun is sensitive to the outer parts ot



Fi)q. lLl Schematic
model of 3He with
with identical
forces between pro-
tons (shaded) and
neutrons in (a).
JHe and JH are shown
in (b) and (c) when
the mn and pp forces
are weaker than the
average np force.

%d;:sf!e “charRe

m (cl

the wave function which are in turn aenGitive to the bi.ndinflenertzy EB

of the system. (The hindin~ enarRy depends upon the force model

selected and the number of channels included in the calculation.) The

asymptotic form of the S-state walva tunctlon component La proportional

to exp(-~~)/~ 5/2 where K - (m EB)~ and P is the usual hypersph.erichl

coordinate (P2 ‘ X2 + Y2), lt one aaaumee that this form 1s valid

over all #pace, then one obtaLns17

Thin is the hindinq enerRY dependence of the isoscalar or mass r~dius

of the F1 hodv Eorm factor. [n Flg.11 are nhown the results trom manv

c~lculations of the Los Alamoa-Io~/a Fndcleevgroup. The symbols refer

onlv to the number of channels and do not indicate whether a two-bodv

or ii two-bodv plum three-bodv potential modal wan uoed. The scaling

behavior is clear, althouRh for the 3He and ~H charge denaitiea it in

‘FL which hnldn for the inonclar rndius.more nearly l?;’ than the E;
1/

Cle~rLy, a model which prmlucea the correct bindinfl enerR~ tor the

trtnucleons will Rive en~enciallv the correct radii.

Now do Fmddeev calcul~tlonn tare for the full term t.wtorn,

which test moro thm the amvmptotic propertied of V? Except tor the
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Fig. 11. The ~He and 3H rms charge radii plotted
versus the triton bending energv EB for various
model Hamiltonians. The curves are fits to the
theoretical values shown.

verv-low-q2 region, ~Rich is determined essentially by tte rms radium

ot the svscem, the chqrae form factor for each of 3He and ‘H is deter-

mined bv three numhera in che trarlicionalnuclear phvstcs reRLme

(qz < ‘!IIEm-2), 20 These are the positions of the first dittractton

minlmurn and the secondary diffraction maximum and the value @t the

form factor at that latter value of qz. The most recent S;lclavFitgdl

to the world’s trinucLeon form factor Ilataare characterized by

11{:

F(q:ax) - - (5.9 i 0s3) n 10-3



For compariso.1,resul~s from Ref.20 for these quantities in the

case of ~H are shown in Figs. 12-14, Nucleon form factors are

included. These observable are plotted versus the corresponding

binding enerfzy for each model. The triangles, x’s, circles, and

inverted triangles correspond to the Reid sott core (RSC),2Z ArROnI?e

V14 (AVIS),23 super soft core (C) (SSCC),24 and de Tourreil-Rouben-

SprunR (B) (TRSB)25 two-body potential models, respectively. Two-

pion-exchange r.hree-nucleonforces [Tucson-Melbourne (TM),26 Brazilian

(BR),27 and Urbana-ArRonne (UA)281 were added only to the RSC and AV14

models. All points with EB > 7.7 MeV contain a three-body force. In

each fiRure there is a band trending upward with increasing bindinR

ener~v. [Points with small EB which lie far off the hand correspond

primarily to three-channel calculations; they have severely truncated

tensor forces and cannot be said to be partfcularlv realistic.1 In

each case the AV14 model tends to produce larger values of q~in or

qz than the RSC model, and smaller values of lF(q~ax)l. A plot for
max
the position of the first diffraction minima in ~He is shown in FiR.15

for comparison. The results of these impulse approximation calcula-

tions may be summarized as follows: our mirtimaa~d maxima are at too

large a value of qz while the values of the maxima are too small,

compared with experiment.

This is depicted most clearly in Fiqs.lb and 17, which compcre

our RSC 34-channel form factor curves corresponding to three dit-

Eerenc three-bor!v force models with the experimentc~l data.z’tzy-~z

The vario,lsthree-bodv forces increase the magnitude of the form fac-

tor in the reeion of the secondary maximum but not enOuRh to aRree

wtth the data. Moreover, there is a serious ~robLem at more moderate

momentum transfers which stems from the fact that the diffraction

minima occur at the wron~ Locations. In the model presented, the fit

to the Low-q2 data is best without the inclusion ot a three-bodv

force.

The ad hoc addition to either form factor of a component which

vanishes at q2=0 and is negative in the reRion of the dtt’fraction

minimum and secondary maximum would alleviate the problems,~~~ Such a

neriativecomponent would shift the form factor minimum and maximum to

smaller value? of qz and would increase the size ok the term factor

maximum, This simple structural behavlour accounts tor the heLpfUL-

ne$isof me$Ion-exchanRecurrents. However, we reiterate thnt there is

no fundamental difference between certain pi,on-exchanRecontribuf:tons

to the charge operator and the inclusion offrelativir.ltlccorrections

in Ehe two-nucleon and three-nuc~eon Hamiltonlans (AH). The mntrix

elements of the charge operator have a strength which can he di~led



Fig. 12. Position of the first
diffraction minimum of the 3H
charge form factor plotted versus
the bindin4 enerQ~ E
erent combinations o! [~~ %~-
bodv and three-body force models.
The triangles, X’s, circles, and
inverted triangles correspond to
the RSC, AV14, SSCC, and ‘CRSB
two-body force models.
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FiR. 13. Position of the secon-
dary diffraction maximum of the
3H charge form factor plotted
versus the binding energy EBo
The data set and symbols are the
same as in Fig. 12.
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Flgm 14, Magnitude of the ~econ- Fig. 15. The ‘He case :isin
IIarydiffraction maximum of the Flq,120
J}{ charRe form factor plotted
versun the binding energy EB.
The data set and symbols are the
same as in Fig. 12.



from the charge operator into the wave functions via AH in an arbitra-

ry manner. ‘fhoae ad hoc calculations of these pion ●xchange current

corrections to the charge operator have heretofore had a neg~tive sign

and appropriate screnflth to alleviate some of the difficulties with

fitting the charge form factors.33 Therefore, it 18 imperative that

trtnucleon calculations be performed which include relativistic

corrections. [One would prefer a model calculation with the minimal

correct ?hvsics which avoids the (v/c)2 expansion.] Onlv in this wav

WL1l we be able to make a clear statement about relativistic (and

therefore pion exchange current) effecca and their role in the

trinucleon form factors.

0
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F(Q, 16, The magnitude of the RSC ~He charge form factor in impulse
flPPrnximationfor neveraL three-tm!v force models pLotted
versus qz, together with the experimental data



the origin when no three-body forco is included, This is modified to

be a slight minimum (except for the ~ model) when a three-b~d~ force

is included. The size of this depression is mucn smaller than Sick

obtained whet~he Fourier transformed the 3Pe form factor data.34 This

o
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L
NO 3-body force ~

. . . . . . . . . . TM 3-body forc6
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FiR. 17. The maRnitude of the RSC 3H char~e form factor Ln
approximation for several three-body force modeLs
versus qz, together with the experimental data.

is a reflection of the qmaller secondarv maximum in the

30

impulse
plotted

calculated

form factor9. It is important to realize that the Fourier transform

of the exper~mental form factor is not necessarily properLy interpre-

ted as a “charR~ denaitv.” Furthermore, the size of the hoLe corre-

sponds to less than IX Ot the total charge ot 3He, which LS the order

of magnitude of relativistic corrections. The dl.fference between the

TM curve near the oriRin and the other three-body force curves

reflects the form factur differcncen at much larger vaLue~ of q2 than

those shown,

The 31{charRe density has a small hole for each modeL. ‘rhisis

caused bv the L=2 (D-wave) component ot the wave function. Tnis com-

pon~’nthap a completely symmetric npin-quartet (S=3/2J wave fllnc-
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Consequently, the two neutrons in the L-2 component of the

wave function must be in a relative odd-parity state (co

the Pauli principle) as must he the remaining proton.
Therefore, the charge tlensitv contribution

component must vanish at the origin. There

in ‘He, because there are two protons and

leaves the remaining nellcron-proton pair

trorn this wave tunction

is no similar restricti~)n

singling out one ot them

in’ anv orbital ~f:;ir{~.
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tiong Consequently, the two neutrone in the L=2 component of the

triton wave function must be in a relative odd-parity state (to

!llltt!lfythe PauLi princlpLe) as must he the remaining protons

Therefore, the charqe density contribution from this wave tunctinn

component must vanish at the oriRin. There is no similar restriction

in IHe, becaune there are two protons and singling out one ot them

leaven the remalntn~ neutron-proton pair in any orbital state.



Finally, although it is difficult to observe the effect in Fig. 18 and

19, the increased hindinR due to the inclusion of a three-body force

draws in the charge density toward the origin at large r.” All curves

correspond to a normalization of unitv.

As a cloainu note, let us consider the relation between the

charge form factors and the Coulomb tnergy Ec due to the Coulomb force

acting between the two protons in 3He. ClearlY, Ec depends upon the

size of 3He and therefore the binding enerRy. Friar35 and Fabre de la

RipeLle36 independently prop~sed exploiting the hyperspherical approx-

H for the Coulomb energy inimation, which leads to an estimate (Ec)

terms of the charge density (and therefore the charge form factor). If

one considers the geometrical picture depicted in Fig.10a, then for an

equilateral triangle corresponding to the dominant S-state component

of Y the distance x between the two protons ia 43 r. Consequently,

for a smooth operator such as l/x, one obtains as a reasonable

approximation

H~
c= ‘c ‘

where

and

(26)

(27a)

(27h)

The idea is to replace the two-body correlation function (required to

calculate < ~ > bv the one-hodv charge density (needed to evaluate

<$>). There ia no a priori reaaon that this must work. If ~ were

Lnstead 6(x) and one tried to ‘eplace it by 6(Y), the approximation

would obviouslv fail badly, as < v 16(x)1 Y > ❑ O whereas one can

see from F~Rs. 18 and 19 that < ? Id(y) IY > * O. Neverthelessl we

have shown bv actual calculation that it works remarkahlv well for the

Coulomb energy.17 This can be seen in FLg.ZU, where EC is plotted

versue E: . The E: approximation is less than lZ larger than Ec tor

all models. The difference arises becauae the correlation function is

suppressed more than the charge denaLty for small val,ues of their

argument when there is short-range repulsion. 37

The approximation is quite useful because we have available

experimental charge form factor data which can he used to calculate

E:. (he ohtains38 63fJ● 10 keV for the Coulomb energy ot ~He. (Thl!3

is smaller than the 650 keV one would obtain for EB = 8.5 MeV in model

calculations, because the experimental form factors are of larger
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Fig. 20. The J!{eCoulomb energy Ec lotted
!versus the hyperspherical approximateon.

magnitude in the region of the secondary maximum where they are

negative.) The experimental binding energy difference between

3H and jHe is 764 keV. The fact that rh~s

is larger than the Coulomb energy 19 il

presence of charge symmetry breaking

Hamiltonian. That is, the neutron-neutron

interactions are not identical. The known

binding energy difference

cledr indication ot the

forces in the nuclear

and proton-proton strong

mixing of the p and w and

the WO and IIwould lead one co predict ac least a small charge

asvmmetry in the nucleon-nuc”l~w~nforce. However, the size of the

effect seen here is not fully understood.

LECTURE LI. Two-Body Photodisintegratiun of the TrLcon

1. tncrofiuction

The photon makes an ideal probe ot the nucleus. The interact,,on

operator is reasonably well ,lnflerstoorl.Thus, one mav ask questinnq

of the nuclear system independent ot the Interaction mechanism. we

have serl how the virtual photon of electron ncatcering can be used tfl

atudv (~e charRe density of the trinucleons. Let us now Look at how



the real photon can be used to investigate the principal physics of

the A=3 continuum.

Before turning to that problem, I would like to enumerate a few

of the interesting aspects of low-energy photonuclear physics, lest

you think that trinucleon photodisintegration is the only story. It

was only a little more than 50 years ago that the first photonuclear

experiment took place:4’ ZH + Y + n + p. The inverse of that

reaction (thermal capture of neutrons by hydrogen), with a cross

section (of 330 mb) some 10% larger than theoretical models could

account for, produced the first incontrovertible evidence for meson

exchange current effects in nuclei.42 The threshold n+d + 3H+y

reaction has a cross section (of 0.52 mb) some 600 times smaller,43

and meson exchange current effects are enhanced (to SO%) relative to

the standard nucleon current transition.44 By exploring such

processes in which normally dominant reaction mechanisms are

suppressed, one can investigate details of nuclear physics which would

othemise be difficult to see. Another example is the fomard (O”)

photodisinteeration of deuteriurn.45 Because the normally dominant El

d(?,p)n
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Fig, 21, Model calculations of the 2H(~,p)n reaction at ()”with and
witho~ltthe relativistic spin-orbit Contribution to the HI
operator. The data are from Ret, 45.



transition from the L-O component of the initial state to the L-1

partial wave of the final state vanishes in thin zeometry, one can

clearly observe noncentral force effects.46 In particular, the spin

orbit terms provide a 20% enhancement of da/dQ for 0=0° as can be seen

in FiR. 21. I will not have time to

of the T=l/2 channel in the

of JH and sHe, compared to the T=3/2

discuss the 65%-90% suppression

three-body photodlsintegration

channel.47-50 It is, however,

intimately related by three-body unitarity to the two-body breakup

channel. kFinallv, one of the long standing puzzles in nu Lear physics

is the deviation from 1 of the ratio of photoneutrons and phc:oprotona

from an alpha particle; i.e., experimentally one finds (see Fig. 22)

a[~He(Y,p)~H1/alQHe(Y,n)3Hel * 1

ml I

FiQ. 22. The bHe(y,p)lH and
~He(y,n)lHe cross section

1.0 I I T I I
evaluation (solid line); dataml’ in (a) are from Ref. 51

for KY < ‘IO MeV, in contradiction to that which one would expect on

the basis OL simple charRe nymmetry arguments.~2 The lint Roes 0’.1.

In nrld~tion to the fact thnt few-body phnton~lcle~r re~l!ri~~n~

vield in.ere?ItLnQphysicm, tharr are pureLv theoretical renNons kor

attempclng to model tllene reactionn.50 At low energy only ~1 few

muLripolen nre important. That is not to nay that hiRher mulripoles



can necessarily be neglected, but they can be treated adequately in

Born approximation. As a consequence, large partial wave eums do not

hide the physics. One can methodically examine a reaction and come to

an understanding of the physics; e.g. the O“ photodisintegration of

deuterium. Because only a few multiples and partial waves dominate

the problem, “exact” model calculations are not impossibly long.

Thus, photonuclear reactions are an appropriate field in which to

study the application of exact equation techniques in nuclear physics.

We shall examine below, as our example, the electric dipole (El)

two-body photodisintegration of tritium:

3H+y+ n+d.

We employ a separable potential formalism and restrict our

consideration to centraL forces. This model has been investigated

thoroughly bv Barbour and Phillips48 and independently by Gibson and

Lehman53 using a description of the nd off-shell scattering that

resembles cLoselV the formalism of Alt, Grassberger, and Sandhas.54

The E2 contribution was shown to be negligible for photon energies of

less than 40 MeV by Barhour and Hendry.55 The phvsics points of

interest are (1) the cross section calculation doen depend on whether

the initial and final states are eiqenfunction9 of the same

HamiLtonian, (2) the full calculagfon Ls 50% larger than the pLane-

wave Born approximation result at the peak of the 90° differential

cross section, and (3) the enhancement is due to using exact equations

which incorporate proper three-body unitarity and therefore coupLe the

t.wo-hodv(rid)breakup channel to the T=l/2 three-body breakup (nnp)

channels‘)3

11. The El operator

For those not familinr with photonuclear reactions, the m~trix

el,ementsof- :.hernuLtipolenerien are known to BO Like EL - (kR)” iit

low energy, where k iJ the photon momentum (enerRy) in fro-land R Im

the size of the nuclear systam of intere~t. We have seen thiitRhc

trinuciwn radiu:,is Lens than 2 fm. A photon of 20 MeV enerRy han

k Y 0.1 fro-l, Thus the rntin of E2 to El matrix elements

19 ~ 0.1, :111(1 the El oper:ltor dornlnatern the l~]w-encr~v

pht~rtj[llslnt~s~r:~til~llrenction.

Re(!:lllrh:lt the ch~r~c I\ennlty operator reluvnnt. tl) r:hQ

cnlc[ll.~rionof vh~rge form f.;~c~orn1s of the form



P(xi) = e6(k - ii) ~ (1 + Tiz) (28)

for a point char~e. Meson exchange current contributions to the

charge density operator are (v/c)* relativistic corrections. What do

we find for the El photodisintegration operator?

Formally, we wish to investigate the Hamiltonian

‘Total
= H+ H’ , (29)

where H’ is the interaction which will be treated perturbatively and H

is the nuclear Hamiltonian composed of kinetic enerRy and pair

interactions. That is, we assume

H= “O+V (30)

where the initial- and final-state eiRenfunctions satisfy

and

(31a)

(31b)

The matrix eLement ~if which determines the transition

from Vi to YE is then Riven by

‘if - (?flH’lvi> .

The cross section for the rencrion in

(32)

.

kwhere “ is the mum over final spin states and average owr lnitiai
t

spin scate~ and ~df is the required phase space integral.

The tr~nsition matrix element involves the interaction of the

photon field ~exp(ik.~),where ~ irn the photon polarization ~lnd~ it~

momentum vector (tc?i= O), with the nuclear current ~, The clirrenf,1



The nucleon current has the expected form

(35)

That is, it is porportional to ~/m, the velocity of the nucleon. Note

chat it is of o?der (v/c), whereas the charge density is (v/c)” and

its eKchange current corrections are (v/c)*. Unfortunacelv, meson

exchange current corrections to ~ are also of order (v/c) and cannot,

therefore, be neulected.

the late 1930’s that one

exchanRe currents in the

region in which we are

continuity equation

b.3

However, it was pointed out by Siegerc56 in

can include the principal effects of meson

long wave length limit (i.e. the low-energy

interested) ~y makinR use of the charge

Long wave Length Limit means to lowest order in ~. In a nucleons-only

regime, where JMEC = O, the electric dipole current is

JU ~/m _ ~ . @,H] . (37)

In that case, the transition matrix element becomes

Mif = (38a)i<wfl ;o[~,Hllvi>

m i(~f - (:)13h)~~) <~fl:”tlv~> ●

Thus, the long wave length limit form of the electric dipole operntor

is :.; , The same result is achieved when the Eeneral cllrrenr..)is

uged by writinfi



(41)

Again, because the

we can evaluate the

initial and final states are eigenfunctions of H,

commutator and perform the Ids to obtain

(42)

the Leading term of which is

‘if - ild<v+:lvi> , (43)

where u = E - E
t i = lfil. Thus, the Siegert (lon!zwave length) Limit

Qf the eLectric dipole operator which includes the meson exchange

current as weLL as the nucleon current (~/m) is ~.~.

Let ue conclude this discussion by pointinz out that there is an

additional reason for using the Siegert form of the transition

operator when one is forced to use approximate solutions to the

nuclear t’gmiltonian. Because the Siegert operator is related to the

charge density, we are able to enforce some phvsical intuition in

normalizing the hound-state spatial density; the normalization for

che current density of the nucleus is unknown, Furthermore, care

should he exercised to avoid the temptation to use the current form of

the operator even when exact ei~enstates of the nuclear Hamiltonian

exist, as thev do for the separable potentiaL modeL. The requirement

of gauge Invariance introduces a gauge transformation in all nonlocaL,

rnoment~lm-llependencpotentials when ~,fi1s used. This complexi~y (see

Y;imn@ucht57for a discussion of ZH photodisintegration) is avoided bv

use of the SieRert forms of the El and E2 operators ~.~ and

; (;OF)(G.;): the appropriate meson exchange currents are properLv

included.

The nllcLear Hamiltoni~n is ansumed to he of the form given in

Eq,(”lo),when the potenttaL operator is

(/4[1)



have

HIvB> = -EBIVB> , EB > 0 ; (45)

(47)

The reduced masses are m = Ma(MB + My)/z Ma and Da - MBMY/(MB + MY),
a

where Ma is the mass of particle a. For three equal mass nucleons,

these reduce to 2M/3 and M/2, respectively. The subscripts in Eq.(47)

mean that nucleon a moves relative to the center-of-mass of the pair

By with momentum ~, while 6 and y move relative to each ocher w!th

momentum k. The subscript n in Eqs.(46) and (47)denotes the remaining

quantum numbers such as spin and i.sospin.

We are concerned here only with two-body photodisintegration,

which is described by the transition amplitude matrix element

A2(a,n,fi) = ‘V&# IH’IYB> ,

where the superscript (-) denotes the outgoing state which corresponds

asvmptoticall~ to an incomtng wave boundarY condition. The two-body

scattering state is a solution of the equivalent equations

(fl>o; E - p2/2m - c )
a an

and

with the resoLvent operators defined as

(49)

(51)

and

G(z) - lH-zl-’ , (\2)

The loun~ > denotes the asymptotic RcntterlnR stnte compri~~~l (~t n

nucleon a movinR freely with reopect to the 6Y hound pair. [t tk~.(50)



is written in terms of the distortion operator

and substituted into Eq.(48), we obtain

6A2(a,n, ) = <’$an;10(+)H’IvB> ,a

(53)

(54)

where n(+) = (H(-))+ . ‘The crux of this operator manipulation is
a a

(+) ,that a Faddeev-like equation can be written IlorOa

J+) -
a

(fi(-)]t = 1 - ~ VB G(E+itI) = G-’(E+in)G(E+in)
a fl#a a

(5>h)

(55C)

Equation (55c) can then be reexpressed in terms of the two-body t-

J+) “ , -
? ‘xu ‘;;) J’y(;f) ‘y:l



where

or

xaJz) - Go(z)~aB - ~ Xay(z)Ty(z)%yBGo(z) (61a)
Y

,

xaB(z) - Go(z)qe - GO(Z) I gayT#x,d(z) .
Y

(61b)

The three-body dynamics of the continuum state now reside in the

transition operator X The two-body photodisintegration amplitudeay “
can be written as B

Az(a,n,fi) = (6an~ lH’ly~>

- f <@a[,$ lG;’(Z)Xay (Z)~y(Z)Go( z) H’lYB> , (62)
y-l

where z = pz/2ma - can + itl,and the three-body dynamics and the

phntodisintegration operator have been separated.

The application of Eq.(62) to the photodisintegration of ~H

rcqutres knowledge of both Ta(z) and H’. For this illustration, we

assume that Ta(z) results from an attractive, central-force, spi.n-

dependent interacti.on57

A
vn(k,k’) = - + gn(k)gn(k’) , (tJ3)

where the in are the strengths of the interactions and

gn(k) - <klgn>

are the momentum dependent form factor~ which determine the rnnges ot

rhe lnteractionso This separabLe form of the nucleon=nuclcon

interaction c~n s~lpport a hound state, and we will ;Issume rhat the

spin-triplet (t) potential does but that che spin-si,nglet (s)

potential does not, The deuteron bound-ntate wave function 1s

(2)(-cC) , CC>() ,<Xtl I= N2 <gnl Go ((,4)

w$ere NY is the normallzatton conntant choserlno that <Xrlyl,>w 1 ;Inll

(;$2)(z)“1s the free-particle rcsolvent for two nllcleons 11’ndt)ntr:l~r

to GO(Z) which is the free-particle renolvent for three nucleonsl. In

tht~ picture we have



t

where

g~(k) ~-1 .An An
ran(z) - @ 1+~ jd3k

a z- k2/2ua
(66)

The uppercase S(I) denote the total spin (isospin) wave functions for

three nucleons. (See Appendix B for details.) Our asymptotic

continuum state becomes

with <gan ~1 = <ganl<~l, and we can write Eq.(62) as

A2(a,n,~) - N2 [f8an;lCo(z)H’lYB>

(67)

(68)

x <gBn, 6’ICO(Z)H’IVB> }

where we have suppressed the spin-1.sospinprojection operator in the

second term of the expression and used the identity

jdlp’1p’><p’1 - 1.

For three Ldentical nucl.eons,one must symmetrize the amplitude:

T
/?M;(z,;) = 3 A2(a,n,~) .

a-l
(69)

The resuLtlng symmetrized expresn~on can be written as

M~(z,~) - Hn(z,b) (/0)

where z - 3p~/4M - r,,+

cd : yJ/bl- 2.225 tleV.

in off-shelL form (z

ltlIinct the deuteron blndinu ent!r~y

The amplitudes appearing in Eq.(/0), writ-ten

not equ~L to 3p3/4M - cd + in nnd 1~1 not the



same as 1$’1), are

and

(71)

3 i @nNxaB(dlgBnl 6’> “ (72)<;lxnn,(z)lt’> - +a~l ~-,

The off-shell three-particle transition amplitude <~lXnn,(z)l~’>

satisfies the inte~ral equation

mnnt(z)w> - <Wnnl(z)w

(73)

+ f jd~p” <~lxnm(z)lfi”>Tm(z -~)<$’IZmn, (z)l&> ,
m-s

where

The calculational method to be used to obtain the two-body

disintegration matrix element ts now clear on the basis of Eqs.(70)

and (73). For chose who prefer a graphical representation, a vivid

description is given in Fi.g.23. The Xnnt amplitudes are obtained by

solving the coupled integral equations driven by the one-nucleon

exchange term Znnl. The matrix describing the two-body photodis-

integration is obtained as an integral relation involving these off-

shelL amplitudes and the Born terms for the disintegration process.

It shouLd he noted that one can treat any weak process by this method,

s~nce the perturbative operator H’ has not yet been specified.

Taking for our ansatz the electric dipole operator, we have

(75)

where ri Are the nucleon center-of-mass coordinates and T~z is the Z-

component isospin PauLi operator for nucLeon i. We include on~y the

dominant S-state component of the triton ground state for this example

(gee Appendix 8):

(76)



Fig. 23. A graphical representation of the equations used to s
generate the two-body photodisintegration transition amplitude.
The wavy line represents the photon, the double line (n) the
rleuteron,and N is a neutron in the case of 3H photodisinte-
*ration. The cross-hatched double line indicates that a partic-
ular correlated pair plus nuleon are off shell.

where the bar in ~a denotes 3H instead of ‘He. Acting with the

operator H’ on YB , we obtain

(77)

The final-state spi.n-isospinprojection in Eq.(71) involves only x,~2

and, because the deuteron wave function is S-wave, we Ret

kz - Mz

working, the electric-

stace to the

where ~ = -t$ . In the model in which we are
P

dipole operator connects Che 2s!/2 ‘round
continuum state.

Let us specialize the equations to a calculable form by

partial-wave decompositions:

Fln(zob) - F.p#’n(z, p) ,

<Flxnn, ly> - I (2L+1)X;nl(P,p’;z) ‘&;’) $

L

<~lZnn,l~’> = ~ (2L+1) +n, (p,p’;Z) pL(~cj) ,
L

where P (costl)is the Legendre function for angular momentum L.
L

some algebra, we obtain for Mt the exp~nsaion
2

2%2

making

(79a)

(7Yb)

(79C)

Atter



+(2,;) - LP [d$t(z,p)

-

+4K; [ p’2dp’X:n(p,p’;z)tn(z - *) tin(GP’)t (Boa)
n-s

Lpti; (ztp).= (80b)

The ~~(z,p) in Eq.(80) can be obtained in the same manner as~t(z,p)

using the protection x ;,
+

; the result is the same except that ~~(k)

replaces Et(k). The Xct and X~~ amplitudes are generated by solving

the coupled inteRral equations

X:n, (p,p’; z) = Z:n, (p,p’; z) +

411 f ~ p“2dp’’Z:,m(p’,p’’.z)~m(z - =)X1 (p p“”Z)#
m-g nm ‘ ‘ ‘

where the driving terms are given by

P,(x)gn(q%nl(w
Z:n,(p,p’;z) = Cnn, jldx

-1 pz + p’z + pp’x - Mz

with the coordinate definitions

q2 -;P 2 +plz + pp’x ,

q 12 - P2+; P’2 + pp’x ,

x= &t’/PP’ ●

Note that we made use of the relation

- z:ln(P’,P;z) ●ZL ,(p,p’;z)nn

The spin-isospin coefficient mat~ix i9

(81)

(82)

(84)

(H5)

Once M~(z,~) is obtained, the differential cross ~ection in



constructed in the standard way:

(86)

where E is the photon energy (=lkl), e is the centre-of-mass angle of

the ele~ted nucleon with respect to the photon direction ~, and of is

the density of final states.

To summarize, we must solve the coupled integral equations given

in Eq.(111)for the X amplitudes. The inhomogeneous terms for these

equations are defined by Eq.(82). The res~llting X~t and XL. musr be

combined with the Born amplitudes defined by Eq. (78) and (79a) as in-

dicated in Eqs (&O) to obtainfl~ which is required by the cross sec-
—

tion expression in Eq.(86).

Iv. Numerical Methods

How are these equations solved

qolve the coupled intearal equations,

in practice. One method53 is to

Eq. (81), for the half-off-shell

nucleon-plus-correlated-pair K amplitudes using standard contour rota-

tion techniques. The “~ariablesp’ and p“ are rotated from the real

axis into the fourth quadrant: p’ + p’ eib and p“ ● p“ e-L4. The

rotation angle o is Limict’dby the singularity in the inhomogeneous

z’ ,(PoP’;&-#) ~term, nn coming from the energy denominator

p2 + p12 + Pplx _ Mz - f), To avoid this sinqtilarity,the rotation

anRle must be chosen such that

0 < tan-’ (~) . (87)

In practice this places a strLnRent li.mlton the energy for which

contour rotation can be used to soLvt! the separable potentiaL

‘i$;3pz/4M-y2/M),
equations.

?{avinRobtained the amplitudes X~n,(p,p’e the

amplitude M~(3p2/4M - Y2/M,F) is computed by rotating the p’ integra-
tion in the second term on the right-hand-side of Eq. (79a). This iS

helpful because the Laund-state pole o- .t is avoided. However, this

rotation is possible onLy Lf no :+inRuLaritiesof rn or #n interfere.

It is easy to show that this is the case for Tn : that fact was used

in .90LvingI?q,(81), However, thegn are more complicated. l~s~ngthe

fact that the spectator function, i.e. the integraL equation generated

component of the bound state wave functtm to be discussed below, can



be fitted very accurately with analytic forms ot the type

u(p) - (1 + Gpz + Bpk + ;p6 + &pS)-’ , (F18)

one can break tin into a sum Of two types of terms: those that require

only a single k integration (k - Ikl) and those that require both a k

integration and an arl,lularintegration. Assuming p’ + p’e-L4 , we

found that if the k integration in those terms that do not involve the

anRular integration are rotated 45° (k + ke ‘i’’/4) , the~o singulari-

ties are encountered. Singularities in the angular-integration terms

are avoided by rotating k the same as p’, i.e., k + ke-io. Through-

out, it is assumed that for the p’ rotation there is no contribution

from the circular arc at intinity. For the integral in Eq. (79a),

this can be shown to be true.

The Faddeev amplitude $, which makes up the S-state component of

the wave function has the simple form

$, - N3 [st(kht(p) - gJWJp)l/(k2 + ; P2 + MEB) (89)

where the un(p) are the sinRlet and triplet spectator functions

obtained by means of a homogeneous set of coupled integral equations59

analogous in form ‘o Eq.(81). These bound-state equations are well

known. However, ~n crder to conveniently evaluate $PY as required in

the Born terms of Eq.(78), the spectator functions were fitted co the

analytic form given in Eq.(88). Barbour and Phillips48 chose another

method for this part of the calculation. Instead of solvinR for the

bound-state wave ft:nctionusing the Hamiltonian that generated the

continuum wave funccion, they assumed a form like that generated by S-

wave separable interactions, set the bindinR eneruy to the experi-

mental value, and uged the rms radius to fix the remaining parameter

defining the spectator function. Such a phenomenological approach

overemphasizes the asymptotic reRion. When combined with the El op-

erator, this leads to a significant overestimate of the cross section

near the peak. We shall return to this point in the next section.

v. Sample Nu.nierical Results

The most important feature of the two-body phocodisintegration

cross section ia the enhancement in the peak reuion of the Fllllcal-

culation over the plane wave Born approximation (PWHA), as shown in

the 90° differential croes sectione in FLR.24. The peak cross section

for the full calculation ie 40-50% larger. This type of effect was

first reported in Ref. 48. However, the fascinating reason for this



enhancement was not clear until the publication of Ref. 53. There it

was shown that the on-shell distorted wave Born approximation result

(DWBA) was actually smaller than the PWBA. On-shell neutron-deuteron

final-state rescattering reduces the cross section -10%, not increases

it. Furthermore, retaininR the off-shell rescattering in the triplet

neutron-deuteron amplitude does not account for the large enhance-

ment. The enhancement in the fuli amplitude comes from the off-shell

scattering in the sinRlet correlated-pair-plus-nucleon intermediate

state that leads to an on-shell neutron-plus-deuteron final state.

m

●

Fig. 24. Comparison Ot the IH(Y,d)n 90” differ-
ential cross sectif}n calculted with the complete
solution of the separable potential equation
(soLid curve) with the plane wave Horn approximi~-
tion for the same model.

That is, the enhancement comes from an N+d* rescatteri.ngwhich takes

the de to a phvsical d. The two-body breakup channel is ah~orhin~

StrenRth from the three-body breakup channel, This is possible only

in a formnlism that properlv includes three-body Ilnitaritv. The two-

bodY and T=l/2 three-body breakup channeLs are not independent, Their

intimate connection cannot he ignored. Exact equation appronchvs were

needed to undcr~tand the physt.c~.

Data for the ~H(y,n)d reaction total cross section i~re shown

Fiq.25, In the electric dipole approximation, the cotaL cross ~ection

is Rw/3 times the 90” differential cross section. l’h~lsthe motlelcill-

culations are qualitatively co~’rect,which is aLL one c:lnhopo for ~,11

the simple model we have constrllcted, The compsri~on of r:humodel

with the data is better seen in a study of ~He(Y,p)d shown in



2.0

1.0

t

0.4

0

Fig. 25. The total cross section
reaction as reported in Ref. 60.

24 30

for the IH(y,n)d

Fiti.26. Here the solid curve Uivea quite a reasonable representation

of the data. The dashed curve is a calculation performed within the

context of this model but using the Ref. 4a prescription for

constrllcting a phenomenolo~ical ground-state wave function. RecalL

thar the correct analytic form was used; the binding energy was

oL--~
E, (MM

FitI,26. Comparison of malected JHe(y,d)p 90”
differential crouo nection data (Ref.61) with the
calculations of Reft53 (molid curve) and Rof, 48,



daterminin~ the spectator function waa fitted to the rms radius. On

the basis of such a curve, Barbour and Phillips concluded that the

photodiaintegration data were incompatible with the rms radius

of 3He. A better conclusion from Fig.26 is that one should use

ground-state and continuum wave functions generated by the same

Hamiltonian. Approximations in physics can be tricky and are often

difficult to justify a priori.

In summary, we have examined a very simple model calculation of

the two-body photodiaintearation of 3H but one which encompasses much

of the important physics. We have seen how to produce a calculation

from an abstract cheery. Finally, we have examined the solution to

part of what was once a real puzzle in photonuclear physics:47,50 ~v

was the two-body cross section so large (compared to the three-body

cross section)?
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Appendix A. Jacobi Coorrlin~tes

The ri are the coordinate of nucleon i, and the subscripts nrc to be

taken cvcLicaLLv. We wilL choone the pair (xl,yl) ~ho~ in Fiu~Al 1:0

he rhe conrdlnaten (x,y) with which

fimplitudem, The other two pairn can

findo bV the rslntlonR

~?-+



!ippendlx n. spin-lsospln rormallsm

The doublet spin states for three nucleons have the form

xl =1[1, ;1;> (Bla)

L [ (++-) + (+-+) - 2 (-++) 1 (Bib)
“ 475

Here a + (or -) means that the nucleon corresponding to that position

has spin up (or down). Similarlv, the lsospin functions ~1 and r12can

be defined to Aave the forms in Eqs.(Bl) where a + (or -) means that

the nucleon is a proton (or neutron); such functions describe 3He and

‘H functions are obtained by interchanging + and - in the Q’s.

The spin-isospin basis states are linear combinations of

these x’s and rI’s. The combinations which we require are

(B2a)

(B2c)

The function +a is fully antisvmmetric under the interchange of any

two nucleons, while 41 and 42 have the same mixed symmetry properties

~~st-inrhe X’S and n’u.

The Pauli principle requirec that the overall wnve Eunccion he

fIIllYnntisvmmetric in the interchange of IILL coordinates of anv pair

of nucleona, The function Oa u natisfles this requirement, where u is

spatiaLIY symmetric. This is the ZS 1
t“~

component Of v. which is

denoted bv S. Combinations of o, and 42 with snatial functton~ of

mixed svmmetrv that de~cribe the trlnucleonn munt alRo possesn the

$a antlsymmetr~ property. There is one: 4, V2 - *2 v, . This is the

2s 1
}~

~tate of mixed symmetry which is denoted hv S’. The full wave

function in then of the form

(1!’1)



Appendix C.

Over 10

char8e densttv

case of 3He.

Exchange Currents

year9 ago pion-exchange current contributions to the

operator were calculated and then lacer applied in the

(See Ref. 33.) Effects were found which were of the

right sign and of sufficient magnitude to resolve the disagreement

between theorv and experiment concerning the size and shape of the

charge form factor. Friar, ‘3 however, showed about the same time that

these corrections to the charge density operator (1) are relativistic

corrections (i.e. , (v/c)2 compared to 11, (2) contain important

momentum-dependent terms which have never been included in 3He

calculations , (3) are model dependent, reflecting the physical

difference between pseudoscalar and p8eudovector couplinRs of pions

and nucleons,39 and (4) are ambieuous, reflecting a unitary ambitzuity

which arises in different methods of calculating these operators.

The fact that these isoscalar exchange currents are of relati-

vistic oriRin means that one must do a relativistic calculation

(includinR refitting the nucleon-nucleon interactions to the two-body

data) to include them in a meaningful wave. The pseudosicalarversus

pseudovector coupling model dependence ia unavoidable. The unitary

ambiguity is vexinR because it would vanish if the wave functions

calculated with a Riven potential wetraused with a commensurate form

of the charRe operator - such matrix elements could be free of any

amhirzuicvo But realistic potentials co date have che wronR form to

correspond to any of the allowed unitary representations of the charge

rlensicvoperator.

Exchanqe currents of the isovector ilk are not relativistic

corrections compared to the nuclear current, ~/M. They contribute in

a non-negligible manner to the maRnecic density

trinucleons. Friar has discussed these in great

the exchanRe current references in the matznetic

of Ref.40.
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